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How can Alzhiemer’s prediction be augmented with multimodal data?
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= We present a novel, multimodal, Contrastive Learning Framework on ADNI Dataset for the

detection of Alzhiemer’s disease (AD) and mild cognitive impairment (MClI)

= \We integrate Image data and Tabular data, including MR Images, Biomarkers, Cognitive

Assessments, and Medical History

= We introduce a novel Tabular Attention that highlights important tabular features, provides more

Interpretability

= We experiment with a Spectrum-based Labelling and search method to highlight the exact stage

of Alzhiemer’s disease

Results
Model AD vs CN AD vs MCl vs CN
Biomarkers 0.68/7 +£0.159 0428 4+ 0.057
Cognitive Tests 0.914 + 0.061 0.758 £ 0.024
Volumetric 0.821 +£ 0.051 0.516 + 0.036
Medical Records 0.925 4+ 0.865 0./89 4+ 0.041
Image 0.885 £+ 0.015 0.761 £ 0.014
Multimodal 0.955 +0.017 0.838 + 0.023
DAFT Tabular Fusion NA 4 NA 0.622 +0.044
3D CNN 0.941 £+ 0.060 0.745 £ 0.064

Table 1. Accuracy of our method compared to SOTA.

Features Highlighted by Tabular Attention

Biomarkers Feature Importance Volumetric Feature Importance

o
N

0.2

o
=

0.1

Attention Score

o
o

Attention Score

Brain
ICV

0.0

FBB
ABETA
Av45
APOE4
FDG
PIB
TAU
PTAU
Entorhinal
Ventricles
MidTemp
Hippo
Fusiform

Features Features

Medical history Feature Importance

Contrastive Learning Framework

0.10

0.08

Attention Score

r 0.06
CLIP loss CLIP loss
{ [ Output ] 0.04
T T i 0 ! 002
X ) ,
R S Frozen Unfrozen [ Linear 1 oo i o o o - - — — - ————
PrDJEEtIDn PFD]ECUDH PrﬂjEEtiDﬂ PrDjECtiDﬂ §| é ﬁ| i| f| ';| §| ';| < ':9 _:’I il fl < _;I il _gl '2| _;I _;I _zl _;I _;I < _gl _zl _:I _SI il ﬁl 2| ﬁl 2| ﬁ| j ';| '§| ﬁ| m 2| '2| '2| gl il _:I
= © Z © = © = e — =
head head head head T F S 2RO 00D S0 5L RESE528232283082 38R0 2sRRER0
Matmul 6o Y=0EPR"5=233088 §25509%&288 F5L£28527% 52829
+ o %@6 o <E<ED.-E'L£’n D 0% 22000 g U""§<EUD_E ch g S
S o O = o D 5 o o o & 8 9 o S & o @ un E > A (SIS
3 o 4 o O o O o b o Y% O o 2 c L o £ 0 o =
( | L o uw L Y w WS Ok vtuw 2 o o I - Y
MLP Image Frozen Jabiia) f - - Tvsg T & E g5 =
Attention . =
encoder encoder H Image encoder Softmax >
- o
t encoder L 4 f
‘ ’ : ; Features
T [Attentlnn weights Iayer] -
[ Label ] ID | Bio | Test X
12 | PIB | 103 [ Activation -
23 | TAU | 123 T + Tests Feature Importance
inear
0.10
Input 0.08
0.06
- 2

Attention Score

0.04

Training: We pretrain the image model on the ground-truth label features, and then finetune the
tabular data encoders, freezing the image enoder model. We also show the tabular attention module.
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o | T = Attention scores for biomarkers highlight PIB-PET-derived beta-amyloid (PIB) and Cerebrospinal
APOE4, PTAU, ... Brain size, ... Baseline results, ... . . . o . , )

AD. MCI. CN Fluid and Plasma Tau (pTau) as significant for predicting changes and Alzheimer’s disease-related

1.95347 2.98083 0.114373 processes.
0.329458 0.870023 3243264 = Accuracy scores for medical history and image data point to these modalities as crucial factors in

Alzheimer’s disease evaluation.

= Note that med
diagnosis resu

ical history alone outperforms image data. Many variables, including baseline
ts, cognitive test and others combined in one model performs best.

= However, medical history only captures a snapshot of information in a specific time. The addition
of image data provides additional information.

Inference: After encoding each of the features, we concatenate them and compute a cosine
similarity. The label with the maximum similarity is the output prediction.

Tabular Attention Remarks

We present an effective and generalizable framework which outperforms previous
state-of-the-art as shown by results. Our novel tabular attention reveals critical vari-
ables (e.g. biomarkers) for detecting Alzhiemer’s disease and mild cognitive impair-
ment.

H = RelLU(X 'chl + bfcl)
A = softmax(H -Wy + by, dim = 1)
O = (X ®A) 'chz -+ beZ

Future research includes the introduction of other multimodal dataset testing and in-

X = Input data, O = output data , -
creased interpretability of the framework.

H = output of hidden layer, A = attention weights
W represent weights and b represent biases
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